Optimal Conditions for Continuous Immobilization of Pseudozyma hubeiensis (Strain HB85A) Lipase by Adsorption in a Packed-Bed Reactor by Response Surface Methodology

نویسندگان

  • Roberta Bussamara
  • Luciane Dall'Agnol
  • Augusto Schrank
  • Kátia Flávia Fernandes
  • Marilene Henning Vainstein
چکیده

This study aimed to develop an optimal continuous process for lipase immobilization in a bed reactor in order to investigate the possibility of large-scale production. An extracellular lipase of Pseudozyma hubeiensis (strain HB85A) was immobilized by adsorption onto a polystyrene-divinylbenzene support. Furthermore, response surface methodology (RSM) was employed to optimize enzyme immobilization and evaluate the optimum temperature and pH for free and immobilized enzyme. The optimal immobilization conditions observed were 150 min incubation time, pH 4.76, and an enzyme/support ratio of 1282 U/g support. Optimal activity temperature for free and immobilized enzyme was found to be 68°C and 52°C, respectively. Optimal activity pH for free and immobilized lipase was pH 4.6 and 6.0, respectively. Lipase immobilization resulted in improved enzyme stability in the presence of nonionic detergents, at high temperatures, at acidic and neutral pH, and at high concentrations of organic solvents such as 2-propanol, methanol, and acetone.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optimization of Candida rugosa lipase immobilization parameters on magnetic silica aerogel using adsorption method

Magnetic silica aerogel in hydrophobic and hydrophilic forms were used as support to immobilize Candida rugosa lipase by adsorption method. Response surface methodology (RSM) was employed to study the effects of the three most important immobilization parameters, namely enzyme/support ratio (0.3-0.5, w/w), immobilization time (60-120 min) and alcohol percentage (20-40, %v/v) on the specific act...

متن کامل

Citronellyl Butyrate Synthesis in Non-Conventional Media Using Packed-Bed Immobilized Candida Rugosa Lipase Reactor

The synthesis of citronellyl butyrate by direct esterification reaction catalyzed by immobilized lipase from Candida rugosa was studied in a continuous packed bed reactor using n-hexane as organic solvent. Parameters such as residence time, temperature, and pH were examined. The optimum conversion was obtained at a flow rate of 1 ml/min (residence time 8 min), temperature of 50 °C, and pH 7.5. ...

متن کامل

Continuous Production of Lipase-Catalyzed Biodiesel in a Packed-Bed Reactor: Optimization and Enzyme Reuse Study

An optimal continuous production of biodiesel by methanolysis of soybean oil in a packed-bed reactor was developed using immobilized lipase (Novozym 435) as a catalyst in a tert-butanol solvent system. Response surface methodology (RSM) and Box-Behnken design were employed to evaluate the effects of reaction temperature, flow rate, and substrate molar ratio on the molar conversion of biodiesel....

متن کامل

Optimization of Lipase Immobilization

Pseudomonas aeruginosa BBRC-10036 was used for lipase production. The organism secreted the enzyme extracellulary. In order to purify the enzyme, precipitation was done first, and then this lipase has been purified by Ion exchange Chromatography leading to 2.3-fold purification and 11.47% recovery. Lipase from P.aeruginosa was entrapped into Ca-alginate gel beads and effect of independent varia...

متن کامل

Investigating the Batch and Continuous Transesterification of Linseed Oil by Using a Alkaline Heterogeneous Catalyst in a Packed Bed Reactor

Both the continuous and batch transesterification of linseed oil were examined in order to maximize the fatty acid methyl esters (FAME) yield. The continuous process was conducted in a packed bed reactor using calcium oxide as a heterogeneous catalyst. In addition, the impact of two variables, namely the molar ratio of methanol to oil and the flow rate (ml/min), on the FAME yield were stu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 2012  شماره 

صفحات  -

تاریخ انتشار 2012